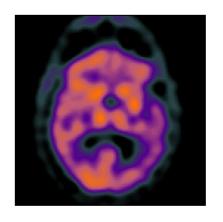
Capítulo V – Reconhecimento de Padrões

Proc. Sinal e Imagem Mestrado em Informática Médica

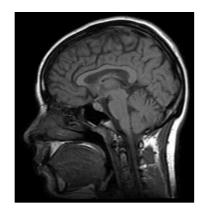
Miguel Tavares Coimbra

Resumo

- Introdução ao reconhecimento de padrões
- 2. Representação do conhecimento
- 3. Reconhecimento estatístico de padrões
- 4. Aprendizagem máquina


Introdução ao reconhecimento de padrões

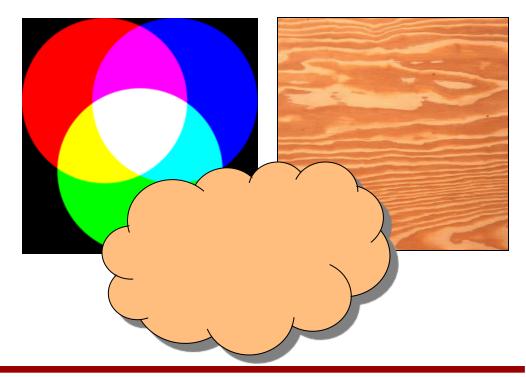
- Introdução ao reconhecimento de padrões
- 2. Representação do conhecimento
- 3. Reconhecimento estatístico de padrões
- 4. Aprendizagem máquina



Introdução

- Consigo manipular imagens.
- Quero agora tomar decisões!

- Classificar/Identificar características.
- Reconhecer padrões.


Características de nível baixo

Objectivas

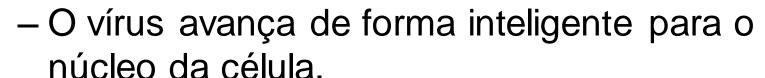
Reflectem directamente as características

da imagem

- Cor
- Textura
- Forma
- Movimento (?)
- Etc.

Características de nível médio

- Algum grau de subjectividade
- Tipicamente são resultados de problemas que implicam mais do que uma solução possível
- Exemplos:
 - Segmentação
 - Fluxo óptico
 - Identificação
 - Etc.



Características de nível alto

- Interpretação semântica da situação
- Comportamento
- Contexto
- Exemplos:
 - Esta pessoa é epiléptica.

Esta pessoa está a fugir daquela.

Como é que os seres humanos fazem isto tão bem?

A ponte semântica

Problema fulcral da investigação actual!

Baixo nível:

- -Cor
- -Textura
- -Forma

-..

Alto nível:

- -Interpretação
 - -Decisão
- -Compreensão

-...

E agora??
Como cruzar esta ponte!

2. Representação do conhecimento

- Introdução ao reconhecimento de padrões
- 2. Representação do conhecimento
- 3. Reconhecimento estatístico de padrões
- 4. Aprendizagem máquina

Conhecimento

- O reconhecimento não é possível sem Conhecimento.
 - Acerca dos objectos a reconhecer.
 - Acerca das classes de objectos.
 - Acerca do contexto do reconhecimento.

Sintaxe e Semântica

Sintaxe

 A sintaxe de uma representação especifica os símbolos que podem ser usados, e a forma como estes podem ser combinados em palavras.

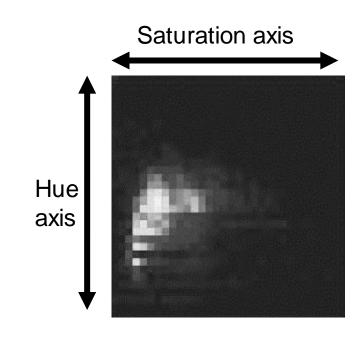
Semântica

 A semântica de uma representação especifica a codificação de significado nesta, assim como a forma que as palavras podem ser combinadas em frases.

Representação

 Uma Representação é uma conjunto de convenções sintáticas e semânticas que tornam possível a descrição de algo.

A língua portuguesa é uma representação com sintaxe e semântica bem definida.

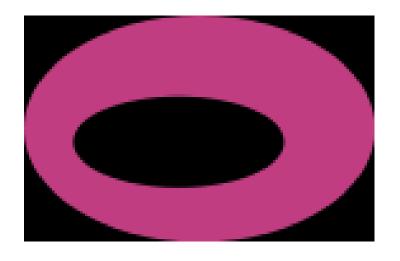


Como representar isto?

Representação do conhecimento

- Como representar matematicamente o conhecimento?
- Várias técnicas:
 - Características
 - Gramática e linguagens
 - Predicate Logic
 - Regras
 - Fuzzy Logic
 - Redes semânticas
 - etc

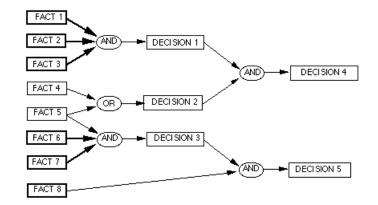
E agora?


Como escolher?

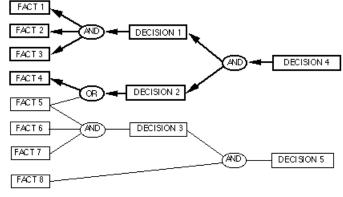
Características

- Não são uma representação pura.
- São blocos fundamentais de representações mais complexas.
- Tipicamente:
 - Representação escalar de uma grandeza.

Tamanho: 5 Curvatura: 2,3 Cor dominante: 8,23 etc.



Regras


 Baseadas em pares condição-acção.

Se condição x for verdadeira, *então* realizar acção y.

- Vantagens:
 - Simples
 - Intuitiva
- Desvantagem:
 - Obtenção das regras nem sempre trivial.

Forward-Chaining

Backward-Chaining

Fuzzy Logic

- Regras: Decisões binárias (sim ou não).
- E se n\(\tilde{a}\)o tivermos certezas?
 - Fuzzy Logic
 - Se condição x Então acção y Com confiança z
- Exemplo: Regras vs. Fuzzy Logic
 - Regras: Se o objecto é redondo então é uma bola.
 - FL: Se o objecto é <u>muito</u> redondo então é uma bola <u>com grande probabilidade</u>.
- Fuzzy Logic: Framework matemático para lidar com esta incerteza.

3. Reconhecimento estatístico de padrões

- Introdução ao reconhecimento de padrões
- 2. Representação do conhecimento
- 3. Reconhecimento estatístico de padrões
- 4. Aprendizagem máquina

Porto pertence a Portugal?

Porto pertence a Portugal

- Quero tomar decisões.
 - Porto pertence a Portugal?
- Sei algumas coisas
 - Um mapa-mundo que inclua cidades e países.
- Posso tomar uma decisão!
 - Porto <u>pertence</u> a Portugal.

Tinha suficiente conhecimento *a priori* para tomar esta decisão.

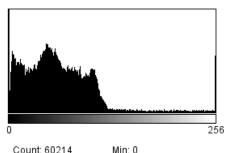
E se eu não tiver um mapa?

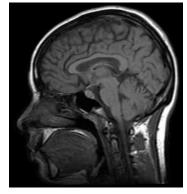
- Continuo a querer tomar uma decisão.
- Observo que:
 - Amarante tem coordenadas x_1,y_1 e pertence a Portugal.
 - Viseu tem coordenadas x_2, y_2 e pertence a Portugal.
 - Vigo tem coordenadas x_3,y_3 e pertence a Espanha.
- E classifico:
 - Porto está perto de Amarante e de Viseu portanto
 Porto pertence a Portugal.
- E se eu tentar classificar Valença?

Reconhecimento estatístico de padrões

- Usei estatísticas para tomar uma decisão.
 - Posso tomar decisões mesmo sem ter conhecimento a priori de todo o processo.
 - Posso cometer erros.

Que padrão?


- Como reconheci este padrão?
 - Aprendi com observações anteriores nas quais sabia o resultado da classificação.
 - Classifiquei uma nova observação.



Características de uma observação

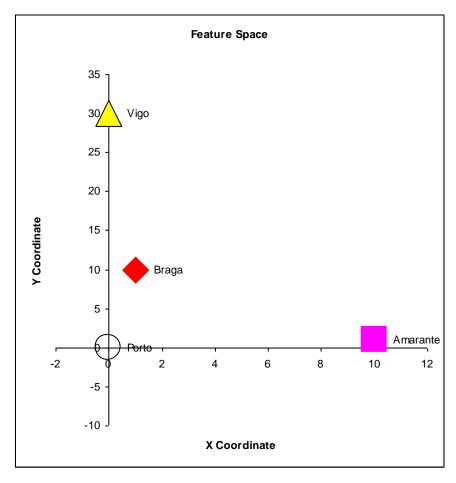
- Reduzi cada
 observação a um
 conjunto fundamental
 de características.
- Vectores numéricos.
 - Condensam
 matematicamente uma
 ou várias
 características.
 - Formam um espaço vectorial.

Mode: 0 (14334)

Exemplo: Cada bin de um histograma é uma característica. Um histograma completo é um vector de características

De volta ao nosso exemplo

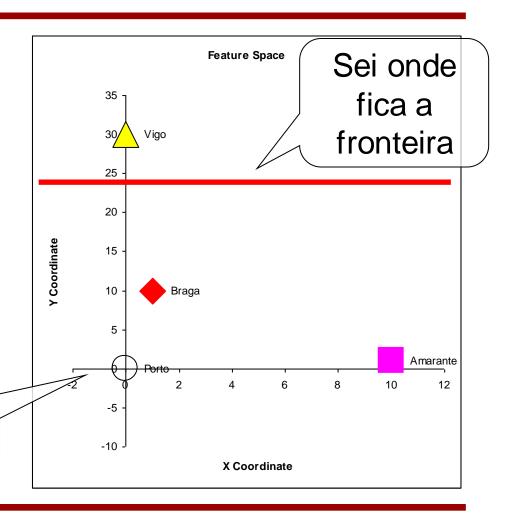
- Classifiquei o Porto como pertencente a Portugal.
- Que característica usei?
 - Localização espacial
- De forma mais formal
 - Defini um vector \mathbf{F} com uma característica $\mathbf{F_1}$, que possui dois coefientes $\mathbf{f_{1x}}$, $\mathbf{f_{1y}}$:


$$F = [F_1] = [f_{1x}, f_{1y}]$$

Espaço de características

Vector de características

- Dois coeficientes.
- Pode ser visto como um 'espaço' de características com dois eixos ortogonais.
- Espaço de características
 - Hiper-espaço com N dimensões em que N é o número total de coeficientes do meu vector de características.

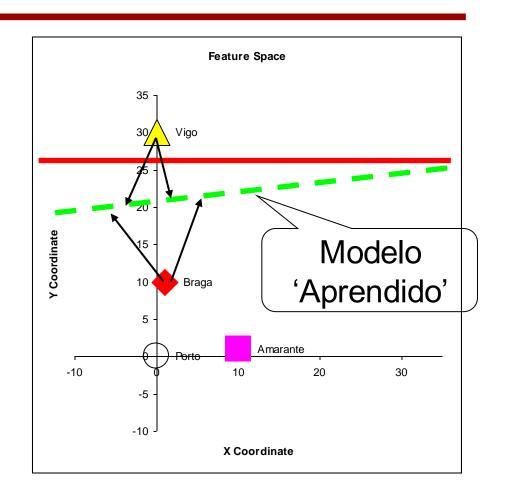


Conhecimento A Priori

 Tenho um modelo preciso do meu espaço de características baseada no meu conhecimento a priori.

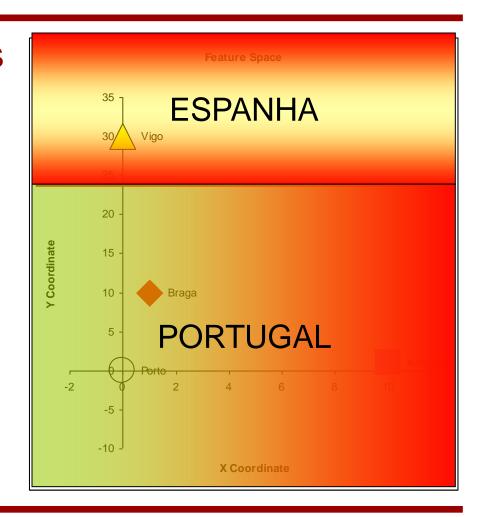
Cidade pertence a Espanha se $F_{1Y}>23$

Porto <u>pertence</u> a Portugal!



E se eu não tiver um modelo?

- Tenho que aprender com as minhas observações.
 - Derivar um modelo.
 - Classificar directamente.
- Fase de treino
 - Aprender os parâmetros do modelo.
- Classificação



Classes de objectos

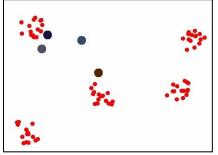
- No nosso exemplo as cidades pertencem a:
 - Portugal
 - Espanha
- Tenho duas classes de cidades.
- Uma classe representa um subespaço do meu espaço de características.

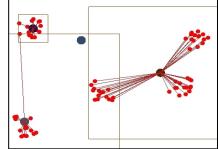
Classificadores

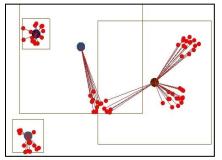
- Classificador:
 - Atribui uma classe a um objecto.
 - Concretiza um padrão.
- Como criar um classificador?
 - 'Ensinar' o classificador com dados de treino.
 - Utilizar técnicas de auto-aprendizagem (e.g. Clustering).

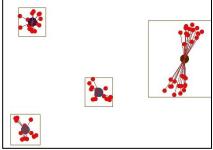
Classificador estatístico

- Dispositivo com:
 - n entradas
 - 1 saída
- As entradas são as características do objecto.
- A saída é a classe a que o objecto pertence.


- Fase de treino
 - O classificador 'aprende' com exemplos a identificar uma classe.
- Exemplo:
 - Distância Euclideana ao vector com as médias das características de uma classe.





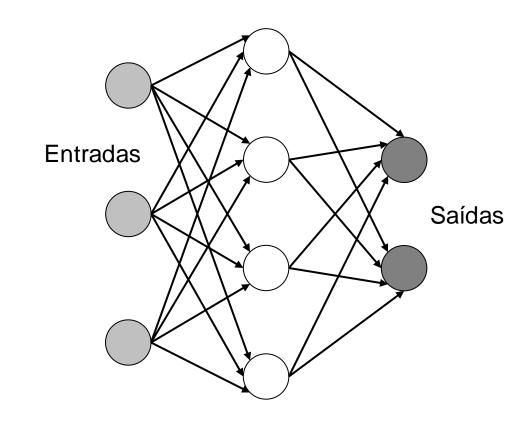

Cluster analysis

- Não necessita de dados de treino.
- Tenta distinguir os objectos em classes diferentes usando muito exemplos não anotados.
- Mais popular:
 - K-means clustering.

Adaptado de Wikipedia

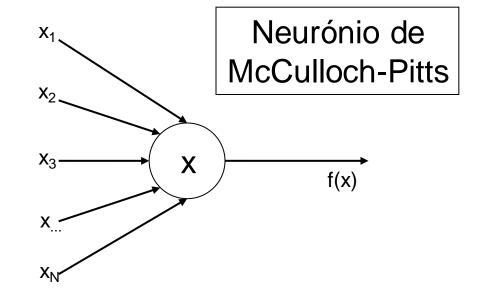
4. Aprendizagem máquina

- Introdução ao reconhecimento de padrões
- 2. Representação do conhecimento
- 3. Reconhecimento estatístico de padrões
- 4. Aprendizagem máquina


Soft-Computing Machines

- Métodos avançados de computação.
- Tentam modelar o sistema automaticamente, utilizando apenas dados de treino.
- Muito eficazes para sistemas complexos!
- Exemplos:
 - Redes neuronais.
 - Support Vector Machines

Redes neuronais


- Constituídas por elementos simples.
 - Neurónios.
- Elevado grau de conectividade.
 - Sistema complexo!
- Inspiração biológica.
 - Cérebro humano.

Neurónios

- N entradas.
- 1 saída.
- Faz um a soma ponderada das entradas.
 - Pesos
- Limiar de disparo.
 - Threshold

$$x = \sum_{i=1}^{N} v_i w_i - \theta \qquad f(x) = \begin{cases} 1 \leqslant x \le 0 \\ 0 \leqslant x > 0 \end{cases}$$

Feed-forward networks

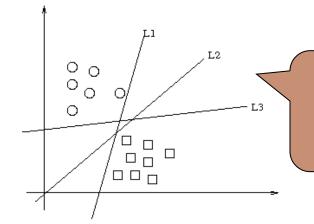
Fase de Treino

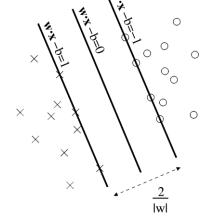
- Rede 'alimentada' com dados pré-anotados.
- Auto-aprendizagem dos pesos.
- Auto-aprendizagem do limiar de decisão.
- Backpropagation

Classificação

- Entrada: Vector de características desconhecido.
- Saídas: Neurónios disparam caso a classificação seja positiva.

Custo computacional elevado!

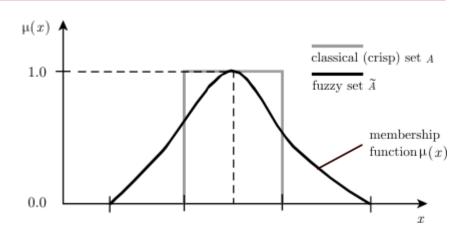


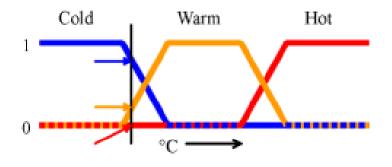

Support Vector Machines

 Calcula o hiperplano de decisão que maximiza a margem de separação entre classes. Aumenta o número de dimensões do espaço de características.

Separação das classes.

Qual o melhor hiperplano?

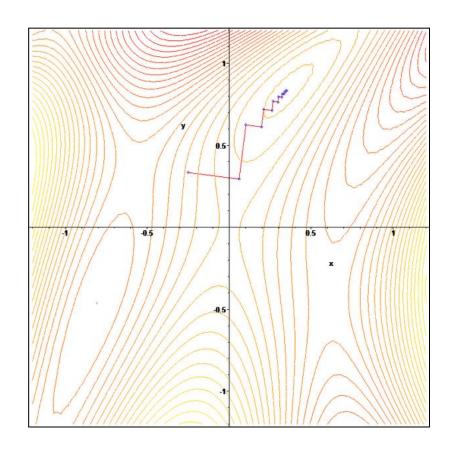




Fuzzy systems

- Usam regras Fuzzy.
- Usam probabilidades em vez de decisões.
- Decisão final:
 - Defuzzification.

Melhor capacidade para lidar com a incerteza.



Optimização

- Modelo do objecto a analisar.
 - Best-Fit
- Minimização de uma função de erro.
- Hill-climbing tem limitações.
- Optimização:
 - Algoritmos genéticos.
 - Simulated annealing.
 - Etc.

Resumo

- A ponte semântica.
- Características, regras e Fuzzy-logic.
- Espaço de características.
- Criação de um classificador estatístico.
- Aprendizagem máquina.

